

Via Paolo Uccello 4 - 20148 Milano Tel +39 02 48 009 757 Fax +39 02 48 002 070

info@dspmindustria.it www.dspmindustria.it

Purchase Record			
Please record all model numbers and serial numbers of your Magtrol equipment, along with the general purchase information. The model number and serial number can be found on either a silver identification plate or white label affixed to each unit. Refer to these numbers whenever you communicate with a Magtrol representative about this equipment.			
Model Number:			
Serial Number:			
Purchase Date:			
Purchased From:			

While every precaution has been exercised in the compilation of this document to ensure the accuracy of its contents, Magtrol, Inc. assumes no responsibility for errors or omissions. Additionally, no liability is assumed for any damages that may result from the use of the information contained within this publication.

COPYRIGHT

Copyright ©2017 Magtrol, Inc. All rights reserved. Copying or reproduction of all or any part of the contents of this manual without the express permission of Magtrol is strictly prohibited.

TRADEMARKS

LabVIEWTM is a trademark of National Instruments Corporation. National InstrumentsTM is a trademark of National Instruments Corporation. Windows® is a registered trademark of Microsoft Corporation.

Safety Precautions

- 1. Make sure that all Magtrol dynamometers and electronic products are earth-grounded, to ensure personal safety and proper operation.
- 2. Securely ground the 7500 Series Power Wattmeter case by connecting a good earth ground at the ground stud located on the rear panel of the unit. Use a number 12 AWG, or larger wire.
- 3. Check line voltage before operating.
- 4. Make sure that dynamometers and motors under test are equipped with appropriate safety guards.

Revisions To This Manual

The contents of this manual are subject to change without prior notice.

Please compare the date of this manual with the revision date on the web site, then refer to the manual's Table of Revisions for any changes/updates that have been made since this edition.

REVISION DATE

1st Edition – October 2017

Table of Contents

SA	FE7	FY PRE	CAUTIONS	I
RE	VIS	IONS T	O THIS MANUAL	
	RE	VISION	DATE	II
тΔ	RI F		ONTENTS	ш
.,,	TAI	BLE OF	FIGURES	V
гп				VI
	WL	KPUSE (JF THIS MANUAL	
	мп		OLD USE THIS MANUAL	
		NVFNT	IONS USED IN THIS MANUAL	VII
4				
١.			VETION	I
	1.1	UNPAC	KING YOUR 7500 SERIES POWER ANALYZER	I
	1.2	DATA S	EATURES OF THE 7500 SERIES POWER ANALYZER	1 2
_	1.5	DAIAS		2
2.	CO	NTROL	.5	6
	2.1	FRONT	PANEL	6
	2.2	FRONT	PANEL CONTROLS AND BUTTONS	
		2.2.1	ENABLING SECONDARY FUNCTIONS	
	• •	2.2.2	USING FRONT PANEL CONTROLS AND BUTTONS	
	2.3	VACUL	JM FLUURESCENT DISPLAY (VFD)	
		2.3.1		
	24	2.3.2 DEAD I	DISPLAT GUIDE	
	2.4			
~	2.5			
3.	INS	IALLA		14
	3.1	POWER	RING UP THE 7500	
		3.1.1		
		3.1.2	DISPLAY SEQUENCE	
	2.0	3.1.3 DDOTE	MAIN MENU	
	3.2	PROTE	TDANGIENT OVEDLOADS	
		3.2.1	IRANSIENT OVERLOADS	
		3.2.2	SURGE PROTECTION	
		324		
	33	J.2.4 TESTIN	JG INSTRUMENTATION SETUP	18
	0.0	3.3.1	WIRING MODE	
		3.3.2	MEASUREMENT FILTER	
		3.3.3	EXTERNAL SENSOR	
		3.3.4	AMP SCALING	
		3.3.5	VOLTS SCALING	
		3.3.6	PHASE SETUP	

		3.3.7	SPECIAL FUNCTIONS	31
4.	OP	ERATIN	G PRINCIPLES	33
	4.1	ANALO	G PROCESSING	33
		4.1.1	VOLTS	33
		4.1.2	AMPS	34
		4.1.3	EXTERNAL SHUNT	35
	4.2	DIGITA	L PROCESSING	35
		4.2.1	AC DETAILS	36
		4.2.2	DC DETAILS	38
	4.3	MEASU	REMENT MODES	38
		4.3.1	PEAK	38
		4.3.2	PEAK HOLD / INRUSH CURRENT	40
		4.3.3	DC	40
		4.3.4	RMS	41
		4.3.5	CREST FACTOR	41
	4.4	MEASU	REMENT METHODS	41
		4.4.1	CYCLE-BY-CYCLE MODE	41
		4.4.2	CONTINUOUS MODE	41
5.	CO	MPUTE	R CONTROLLED OPERATION	42
	5.1	ABOUT	THE GPIB INTERFACE	42
		5.1.1	INSTALLING THE GPIB/IEEE-488 CONNECTOR CABLE	42
		5.1.2	CHANGING THE GPIB PRIMARY ADDRESS	42
	5.2	USB DR	RIVER SETUP FOR WINDOWS OPERATION SYSTEM	43
	5.3	ETHER	NET CONNECTION	45
	5.4	CHECK	ING THE 7500-TO-PC CONNECTION	45
	5.5	DATA F	ORMAT	46
		5.5.1	OT EXAMPLE	46
		5.5.2	OE EXAMPLE	47
		5.5.3	OA/OV/OW/OF EXAMPLE	47
	5.6	PROGR	AMMING	47
		5.6.1	DATA TERMINATION CHARACTERS	47
	5.7	7500 M	AG.NET COMMANDS	48
		5.7.1	' * COMMANDS	48
		5.7.2	MEAS URE COMMANDS	48
		5.7.3	CONF IGURATION COMMANDS	50
		5.7.4	FUNC TION COMMANDS	54
		5.7.5	COMMUNICATION COMMANDS	54
	5.8	WEB IN	TERFACE OPERATION	55
6.	CA	LIBRAT	ION	56
	6.1	CLOSE	D-BOX CALIBRATION	56
	6.2	CALIB	RATION SCHEDULE	56
	6.3	CALIB	RATION COMMANDS	56
	6.4	BASIC (CALIBRATION PROCESS	57

APPENDIX A: SCHEMATICS
A.1 BLOCK DIAGRAM
APPENDIX B: COMPATIBLE COMMAND SETS61
B.1 CONFIGURATION COMMANDS
B.2 DATA OUTPUT COMMANDS
SERVICE INFORMATION
RETURNING MAGTROL EQUIPMENT FOR REPAIR AND/OR CALIBRATION65
RETURNING EQUIPMENT TO MAGTROL, INC. (UNITED STATES)
RETURNING EQUIPMENT TO MAGTROL SA (SWITZERLAND)65

TABLE OF FIGURES

2. CONTROLS

Figure 2–2 Secondary Function Menu	7
Figure 2–3 Device Setup Menu	9
Figure 2–4 Rear Panel	11
Figure 2–5 Input Module	
Figure 2–6 GPIB/IEEE-488 Interface	12
Figure 2–7 USB Interface	
Figure 2 –8 Ethernet Connector	12

3. INSTALLATION/CONFIGURATION

Figure 3–1 Initial Display
Figure 3–2 Title Display
Figure 3–3 Revision Display
Figure 3–4 Phase Main Menu
Figure 3–5 Summation Main Menu
Figure 3–6 Custom Main Menu
Figure 3–7 Transient Voltage Suppression
Figure 3–8 Single-Phase, Two-Wire Wiring Schematic
Figure 3–9 Single-Phase, Two-Wire Wiring Connection
Figure 3-10 Single-Phase, Three-Wire Wiring Schematic
Figure 3–11 Single-Phase, Three-Wire Wiring Connection
Figure 3–12 Three-Phase, Three-Wire Wiring Schematic
Figure 3–13 Three-Phase, Three-Wire Wiring Connection
Figure 3–14 Three-Phase, Four-Wire Wiring Schematic
Figure 3–15 Three-Phase, Four-Wire Wiring Connection
Figure 3–16 Three-Voltage, Three-Ampere Wiring Schematic
Figure 3–17 Three-Voltage, Three-Ampere Wiring Connection
Figure 3–18 Sensor Substitution Wiring Schematic
Figure 3–19 Sensor Substitution Wiring Connection
Figure 3–20 External Sensor Scale Factor Setup Menu
Figure 3–21 Current/Potential Transformer Connection
Figure 3–22 Amp Scaling Setup Menu
Figure 3–23 Amp/Volt Scaling Activated
Figure 3–24 Volt Scaling Setup Menu
Figure 3–25 Cycle-by-Cycle Mode
Figure 3–26 Hold Mode
Figure 3–27 Average Mode
Figure 3–28 Peak Hold Clear Display
Figure 3–29 Custom Display
Figure 3–30 Custom Display Menu

4. OPERATING PRINCIPLES

	Figure 4-1 Peak Example	39
	Figure 4–2 Peak Hold/Inrush Current Example	40
	Figure 4–3 Crest Factor Example	41
5.	COMPUTER CONTROLLED OPERATION	
	Figure 5–1 GPIB Installation	42
	Figure 5–2 GPIB Address Setup Menu	43
	Figure 5–3 Web Interface Home Page	55
6.	CALIBRATION	
	Figure 6–1 Calibration/Verification Test Setup	57

PURPOSE OF THIS MANUAL

This manual contains all the information required for the installation and general use of the 7500 Series Power Analyzer. To achieve maximum capability and ensure proper use of the instrument, please read this manual in its entirety before operating. Keep the manual in a safe place for quick reference whenever a question should arise.

WHO SHOULD USE THIS MANUAL

This manual is intended for those operators who are planning to use the 7500 Series Power Analyzer for power measurement purposes either as a stand-alone instrument or in conjunction with any Magtrol Hysteresis, Eddy-Current or Powder Brake Dynamometer, any Magtrol Dynamometer Controller and M-TEST Motor Testing Software.

MANUAL ORGANIZATION

This section gives an overview of the structure of the manual and the information contained within it. Some information has been deliberately repeated in different sections of the document to minimize cross-referencing and to facilitate understanding through reiteration.

The structure of the manual is as follows:

- Chapter 1: INTRODUCTION Contains the technical data sheet for the 7500 Series Power Analyzer, which describes the unit and provides its mechanical and electrical characteristics.
- Chapter 2: CONTROLS Description of the elements located on the front and rear panels of the unit.
- Chapter 3: INSTALLATION/CONFIGURATION Provides information needed for setup of the 7500 including wiring mode, measurement filter, external sensor, amp scaling and volt scaling along with phase setup instructions and special functions available.
- Chapter 4: OPERATING PRINCIPLES Information pertaining to theory of operation including analog processing, digital processing, measurement modes and measurement methods.
- Chapter 5: COMPUTER CONTROLLED OPERATION How to run a test when the 7500 is used with a PC. Includes information on IEEE-488 and RS-232 Interface, data format, programming and command set.
- Chapter 6: CALIBRATION Provides recommended calibration schedules along with stepby-step instructions for the calibration procedure.
- Chapter 7: OPTIONAL FEATURES Provides information regarding various optional features available with the 7500 including analog outputs.
- Chapter 8: TROUBLESHOOTING Solutions to common problems encountered during setup and testing.
- Appendix A: SCHEMATICS For the main board, input modules, key pad and analog output.

CONVENTIONS USED IN THIS MANUAL

The following symbols and type styles may be used in this manual to highlight certain parts of the text:

Note:	This is intended to draw the operator's attention to complementary information or advice relating to the subject being treated. It introduces information enabling the correct and optimal functioning of the product to be obtained.
Caution:	This is used to draw the operator's attention to information, directives, procedures, etc. which, if ignored, may result in damage being caused to the material being used. The associated text describes the necessary precautions to take and the consequences that may arise if the precautions are ignored.
WARNING!	THIS INTRODUCES DIRECTIVES, PROCEDURES, PRECAUTIONARY MEASURES, ETC. WHICH MUST BE EXECUTED OR FOLLOWED WITH THE UTMOST CARE AND ATTENTION, OTHERWISE THE PERSONAL SAFETY OF THE OPERATOR OR THIRD PARTY MAY BE PUT AT RISK. THE READER MUST ABSOLUTELY TAKE NOTE OF THE ACCOMPANYING TEXT, AND ACT UPON IT, BEFORE PROCEEDING FURTHER.
Danger:	The symbol indicates danger of injury or death from electric shock due to high voltages and current. Do not touch. Use extreme caution. AC voltages over 33 V RMS, 46.7 V peak and DC voltages over 70 V are deemed to be hazardous in terms of IEC 61010. Further material damage may happen.
CAT II 1000V	: This category refers to local-level electrical distribution, such as that provided by a standard wall outlet or plug in loads. Examples of Measurement Category II are measurements performed on household appliances, portable tools, and similar modules, 1000V is working voltage.

UNPACKING YOUR 7500 SERIES POWER ANALYZER Your 7500 Series Power Analyzer was packaged in reusable, shock resistant packing material that will protect the instrument during normal handling. 1. Make sure the carton contains the following: ¢¢**0** ¢¢**0** 000 7500 Series Power Analyzer Line cord Magtrol User Manual **DVD-Rom** 50 FR Certificate of Calibration Banana Jack Connectors (4 each per phase) USB cable Isolated BNC Sensor Calibration Certificate Connectors (1 each per phase)

Introduction

1_

2. Inspect the contents for any evidence of damage in shipping. In the event of shipping damage, immediately notify the carrier and Magtrol's Customer Service Department.

Note: Save all shipping cartons and packaging material for reuse when returning the instrument for calibration or servicing.

1.2

1.1

NEW FEATURES OF THE 7500 SERIES POWER ANALYZER

Magtrol's new 7500 Series Power Analyzer is an upgraded version of the 6510e/6530. The new features that make the unit unique include:

- **Peak Hold:** Allows the unit to store the highest value read since the last peak hold was cleared. Values can include amps, watts and volts in any preferred combination.
- Average: Will average the volts, amps and watts over the period that the average function is enabled.
- Custom Readout: Display can be configured to present data in any desired format.

7500 SERIES

1.3 DATA SHEET

7500 SERIES POWER ANALYZER

FEATURES __

- **Single/Three-Phase Capabilities:** For single (7510) or three-phase (7530) power measurements
- Ranges: Up to 600 V_{ms} @ 20 A continuous duty
- Interfaces: USB & IEEE-488
- Ethernet Connectivity
- Data Transfer Rates: Up to 100 per second
- Accuracy: Up to 0.1%
- Vacuum Fluorescent Display: High-quality, easyto-read, customizable readout displays volts, amps, power and power factor
- Measurement: Continuous or cycle-by-cycle
- Bandwidth: DC up to 100 kHz
- Input Power: Accepts 120/240 V_{rms}, 60/50 Hz power at 20 VA max
- Auto Ranging: Automatically scales instrument for most accurate range
- Isolation: 1000 V_{rms} to earth, 750 V_{rms} line-to-line
- Average: Displays running average of amps, volts and watts
- Peak Hold: Stores the highest value read. Values can include amps, watts and volts in any combination
- External Shunt Input
- Calibration Certificate: NIST Traceable
- Rack Mounting: 19" (482.6 mm) with handles

APPLICATIONS ____

- Motors and Drives
- Lighting Fixtures/Ballasts
- Office Equipment
- Household Appliances
- Power Tools
- HVAC Equipment
- Calibration of Test and Measuring Instruments
- Switching Power Supplies
- Power Inverters
- Transformers

The 7500's data transfer rate makes it ideal for both static and dynamic tests.

DESCRIPTION _

The Magtrol 7500 Series Power Analyzer is an easy-to-use instrument ideal for numerous power measurement applications. From DC to 100 kHz AC, the 7500 measures volts, amps, watts, volt-amps, frequency, crest factor, Vpeak, Apeak and power factor in one convenient display. They may be used either as stand-alone instruments or in conjunction with any Magtrol Hysteresis, Eddy-Current or Powder Brake Dynamometer; any Magtrol Dynamometer Controller and M-TEST Software for more demanding motor test applications.

©2017 MAGTROL | Due to continual product development, Magtrol reserves the right to modify specifications without forewarning.
DATASHEET

🛃 MAGTROL

7500 SERIES

SYSTEM CONFIGURATIONS _

FRONT PANEL

BACK PANEL

J MAGTROL

7500 SERIES

SPECIFICATIONS _____

	VOLTAGE INPUT	CURRENT INPUT	EXTERNAL SENSOR INPUT	POWER	
Ranges	30 V, 150 V, 300 V, 600 V	1 A, 5 A, 10 A, 20 A	50 mV, 250 mV, 500 mV, 1 V		
Maximum Voltage	750 V AC/DC terminal (V) to terminal (±) and 1000 V AC/DC terminal to earth ground	1000 V AC/DC terminal to ground	±1 V AC/DC		
Crest Factor	1.7 @ full scale input	2.7 @ full scale input	2.4 @ full scale input		
Impedance	2 mΩ	12 mΩ	17 ΚΩ		
Display Range	5 digits with 1 mV resolution	5 digits with 1 mA resolution	5 digits with 1 μV resolution	5 digits with 1 mW resolution	
ACCURACY					
DC	DC ±(0.1% Reading + 0.2% Range) 0.4% of VA range				
5 Hz - 500 Hz	5 Hz - 500 Hz ±(0.1% Reading + 0.1% Range) 0.2% of			0.2% of VA range	
500 Hz - 10 kHz ±((0.015 × F(kHz)% Reading) + 0.3% Range) 0			0.6% of VA range		
10 kHz - 100 kHz	±((0.015 × F(kHz)% Reading) + 0.3% Range) 0.6% + (0.03% × F(kHz)% of VA range)				
> 100 kHz	0 kHz N/A (measurement band limited to DC–100 kHz)				

FREQUENCY

Source	$V_{_1}, A_{_1}, V_{_2}, A_{_2}, V_{_3}, A3$ (For Vx and Ax, source input must be >10% of range setting)
Accuracy	20 Hz to 500 Hz; 0.05%
EXT. Input	BNC non-isolated, earth ground referenced
Input Impedance	100 kΩ
Voltage Level	TTL / CMOS
Maximum Voltage	50 V

DIMENSIONS		
Width	19.0 in	483 mm
Height	3.5 in	89 mm
Depth with handles	12.4 in 13.8 in	315 mm 351 mm
Weight	12.97 lb	5.88 kg

©2017 MAGTROL | Due to continual product development, Magtrol reserves the right to modify specifications without forewarning.

7500 SERIES

OPTIONS AND ACCESSORIES _

EXTERNAL SHUNTS/SENSORS

If currents continuously reach above 20 amps, an external sensor must be used. Magtrol offers three different types of external shunts for use with Magtrol Model 7500 High-Speed Power Analyzer.

The HA Series shunt, designed for power cable hook-up utilizing 3/8-16 screws, has an insulating base and can be mounted on conductive surfaces. The LAB Series shunt also comes with an insulating base, along with thumb screws for the power leads and knurled nuts on the sensing terminals. The FL Series is a relatively small bus, bar-mounted shunt with large end blocks. The comparatively large end blocks and short spacing aid in cooling and allow the shunt to operate in more extreme environments. All shunts are calibrated on equipment with current certifications traceable to N.I.S.T.

SENSOR SUBSTITUTION WIRING CONNECTION

SPECIFICATIONS				
	HA Series	LAB Series	FL Series	
Rated Current	50 to 500 A	750 to 1000 A	2000 to 3000 A	
Output	50 mV			
Bandwidth	DC to 60 Hz			
Accuracy	± 0.25% (± 0.1% accuracy with calibration certificate is available for an additional cost)			
Operating Temperature	For optimum accuracy, temperature of shunt should be 30 °C to 70 °C			

AVAILABLE MODELS

Туре	P/N	Amps
HA	004640	50
HA	004641	100
HA	004642	150
HA	004643	200
HA	004644	250
HA	004645	300
HA	004646	400
HA	004647	500
LAB	004648	750
LAB	004649	1000
FL	005214	2000
FL	005286	3000

ORDERING INFORMATION

7510	Single-Phase Power Analyzer
7530	Three-Phase Power Analyzer

2. Controls

2.1 FRONT PANEL

The front panel provides a power switch, sixteen control buttons and a Vacuum Fluorescent Display (VFD).

Figure 2–1 Front Panel

2.2 FRONT PANEL CONTROLS AND BUTTONS

The front panel controls and buttons, from left to right, are:

- Power switch
- Ten double-function control buttons:

Primary Function	Secondary Function
PHASE	DISPLAY
▼ CURRENT RANGE	DC (current)
▲ CURRENT RANGE	RMS (current)
AUTO CURRENT RANGE	PEAK-CF (current)
▼ VOLTAGE RANGE	DC (voltage)
▲ VOLTAGE RANGE	RMS (voltage)
AUTO VOLTAGE RANGE	PEAK-CF (voltage)
CYC-CONT	SOURCE
W-VA-PF	AVG
HOLD	PEAK HOLD

- SHIFT enables secondary functions printed in blue above control buttons
 - Five USER MENU buttons
 - Left Arrow <

٠

- Right Arrow ►
- Up Arrow ▲
- Down Arrow **▼**
- ENTER

2.2.1 ENABLING SECONDARY FUNCTIONS

To enable the secondary function of the double-function control buttons:

1. Press the blue SHIFT button and release it. The word "SHIFT" appears in the display:

CURRENT	VOLTAGE	POWER/PF
0.000 AXXX	0.000 VXXX	0.000 XXXX
DOOXX	עססס	SHIFT

Figure 2–2 Secondary Function Menu

2. Press any control button to enable the function shown in blue letters above the button.

2.2.2 Using Front Panel Controls and Buttons

2.2.2.1 Controls/Single-Function Buttons

Button	To Use	Function
POWER	Press I to turn power ON Press O to turn power OFF.	Turns power ON or OFF.
SHIFT	Press this button and release; then press desired control button.	Enables the function written in blue above control button.
	User	Menu
ENTER	Press this button.	Enables/Disables USER MENU.
•	Press this button.	When USER MENU is enabled, toggles between fields, selections or the digits in a numerical value.
	Press this button.	When USER MENU is enabled, toggles between fields, selections or the digits in a numerical value.
	Press this button.	When USER MENU is enabled, toggles between selections or increases the selected digit of a numerical value.
▼	Press this button.	When USER MENU is enabled, toggles between selections or decreases the selected digit of a numerical value.

2.2.2.2 Double-Function Buttons

r	*•	
Button	To Use	Function
DISPLAY	Press SHIFT and release; then	Shows custom display.
	press this button. (For further	
	instruction, see Section 3.3.7.4	
	- Custom Display.)	
PHASE	Press this button.	Toggles through phase 1, 2, 3 and summation.
	Cur	rent
DC	Press SHIFT and release; then	Selects DC amps measurement.
	press this button.	
RMS	Press SHIFT and release; then	Selects RMS amps measurement.
	press this button.	
PEAK-CF	Press SHIFT and release; then	Selects displayed amps measurement.
	press this button.	Continue to press SHIFT then PEAK-CF
		and the displayed values toggle through the
		• Acf (amps crest factor readings)
		• A_{\sim}^{\uparrow} (amps peak hold/inrush readings)
		• Apk (amps peak readings)
	Current	t Range
▼	Press this button.	Decrements amps range.
	Press this button.	Increments amps range.
AUTO	Press this button.	Selects/deselects amps auto range.
	Voli	age
DC	Press SHIFT and release: then	Selects DC voltage measurement.
	press this button.	
RMS	Press SHIFT and release; then	Selects RMS voltage measurement.
	press this button.	
PEAK-CF	Press SHIFT and release; then	Selects displayed voltage measurement.
	press this button.	Continue to press SHIFT then PEAK-CF
		and the displayed values toggle through the
		following:
		• VCI (voltage crest factor readings) • $V \uparrow$ (voltage peak hold/insuch readings)
		• Vnk (voltage peak readings)
	Voltage	Bange
•	Press this button	Decrements voltage range
	Prose this button	Decrements voltage range.
	Press this button	Colocto/docolocto voltago outo rongo
	Press this button.	Selects/deselects voltage auto range.
SOURCE	Press SHIFT and release; then	Selects the signal that the cycle-by-cycle
	press this button.	Continue to press SHIFT then SOURCE and
		the source togales through the following:
		• V1. V2. V3 (voltage input)
		• A1, A2, A3 (amps input)
		NOTE: Selecting SHIFT then SOURCE will
		automatically switch unit to cycle-by-cycle
		mode.
CYC-CONT	Press this button.	Selects continuous or cycle-by-cycle
		measurement method.
AVG	Press SHIFT and release; then	Enables averaging mode.
	press this button.	

		~
Button	To Use	Function
W-VA-PF	Press this button.	Selects what calculated value is to be displayed.Continue to press W-VA-PF and the displayed values toggle through the following:• W↑ (inrush watts)• W (watts)• VA (V _{rms} × A _{rms})• PF (power factor)
PEAK HOLD	Press SHIFT and release; then press this button.	Resets peak hold/inrush values.
HOLD	Press this button.	Holds displayed values until hold is pressed again. NOTE: All internal machine functions will be halted except auto-ranging when the HOLD feature is enabled.

2.3 VACUUM FLUORESCENT DISPLAY (VFD)

The VFD provides information about the control functions, phase voltages and currents.

Top Row	Bottom Row
Current	Current Range
Voltage	Voltage Range
Power/PF	Source/Status

2.3.1 CONTRAST SETTINGS

The 7500 Series Power Analyzer is shipped with the Contrast Setting on low in order to prolong display life. If it is necessary to increase the Contrast for improved readability, execute the following steps using the USER MENU located on the front panel of the unit.

1. Press the ENTER button. The display should appear as follows:

Figure 2–3 Device Setup Menu

- 2. Press \blacktriangleright and \blacktriangleleft buttons until "I/O" appears in the display.
- 3. Press ENTER button.

Note:

- 4. Press \blacktriangleright and \blacktriangleleft buttons until "DISPLAY BRIGHTNESS" appears in the display.
- 5. Use the \blacktriangle and \triangledown buttons until desired brightness is reached.
- 6. Press ENTER button to return to main menu.

There are three settings available; low, medium and high. Make

sure the lowest possible setting is used to achieve desired result. Using a setting higher than necessary may cause display segments to burn-in over a period of time, resulting in uneven illumination from segment to segment.

2.3.2 DISPLAY GUIDE

Following is a reference for symbols, abbreviations and messages that are used in the 7500.

Symbol/Abbreviation/Message	Meaning
SHIFT	Shift button was pressed
V	Volts
A	Amps
W	Watts
PF	Power Factor
pk	Peak
cf	Crest Factor
1	Phase 1
2	Phase 2
3	Phase 3
*	Scaling function is activated
<u> </u>	Average function is activated
•	Peak Hold/Inrush function is activated
Σ	Summation
↑	Peak Hold/Inrush
	DC
~	RMS (AC+DC)

2.4 REAR PANEL

The rear panel provides connectors and receptacles for connecting to appropriate equipment.

2.5

REAR PANEL INPUTS AND OUTPUTS

1 INPUT MODULE Contains the Voltage Input, Current Input and External Sensor connectors for each phase.

Figure 2–5 Input Module

Noltage Input Connect wires to measure voltage across the load (parallel). CAUTION: VOLTAGE SHOULD NOT EXCEED 750 V AC/DC TERMINAL (V) TO TERMINAL (\pm) AND 1000 V AC/ DC TERMINAL TO EARTH GROUND. ^{1b} Current Input Connect wires to measure amps through the load (series). CAUTION: Amps should not exceed 20 A continuous. VOLTAGE SHOULD NOT EXCEED 1000 V AC/DC TERMINAL TO GROUND. **1**c External Sensor Alternate amps input for current sensor or shunt. VOLTAGE SHOULD NOT EXCEED ±1 V AC/DC. CAUTION:

GENERAL INFORMATION

Figure 2–7 USB Interface

 Image: Second state of the second

EARTH GROUND	Attach earth ground here.	
STOP	WARNING:	MAKE SURE THAT ALL MAGTROL DYNAMOMETERS AND ELECTRONIC PRODUCTS ARE EARTH-GROUNDED, TO ENSURE PERSONAL SAFETY AND PROPER OPERATION. SECURELY GROUND THE 7500 SERIES POWER ANALYZER CASE BY CONNECTING A GOOD EARTH GROUND AT THE GROUND STUD LOCATED ON THE REAR PANEL OF THE UNIT. USE A NUMBER 12 AWG, OR LARGER WIRE.

3. Installation/Configuration

Before installing the 7500, you should become familiar with the front and rear panels, as outlined in *Chapter 2 – Controls*.

3.1 POWERING UP THE 7500

Note:

WARNING! TO REDUCE THE RISK OF ELECTRIC SHOCK, MAKE SURE THE 7500 IS EARTH GROUNDED BEFORE STARTING!

3.1.1 LINE VOLTAGE

The 7500 will operate from 85 to 264 VAC on a 50/60 Hz line voltage.

3.1.2 DISPLAY SEQUENCE

After turning the power on to the 7500, the Initial Display panel will appear:

Figure 3–1 Initial Display

followed by the Title Display.

Figure 3–2 Title Display

Then an additional display will appear indicating the version of your Magtrol 7500 Series Power Analyzer.

Figure 3–3 Revision Display

3.1.3 MAIN MENU

When the 7500 is completely powered up and ready for use, the main menu will appear on the display. The main menu is defined by the last configuration that was used. This could include one of three different menus: phase, summation or custom.

The phase menu could be a representation of phase 1, 2 or 3 and will appear as follows.

\square	CURRENT	VOLTAGE	POWER/PF
	0.000 RXXX	0.000 VXXX	0.000 XXXX
	DOOXX	עססס	

Figure 3–4 Phase Main Menu

The summation menu contains information pertaining to all 3 phases. The voltage value represents an average of the 3 phases and the amps and watts values represent the sum of the phases.

Figure 3–5 Summation Main Menu

Note:

The summation menu is not available for 7510 device.

The custom menu can include up to 6 fields with selections dependent on the measurement mode.

CURRENT	VOLTAGE	POWER/PF
0.000 XXX	X D.OOD XXXX	0.000 XXXX
	X D.OOD XXXX	0.000 XXXX

Figure 3–6 Custom Main Menu

3.2 PROTECTING YOUR 7500

Before the 7500 is used for power measurement, guidelines regarding transient overloads, current overload, surge protection and circuit breakers must be followed.

3.2.1 TRANSIENT OVERLOADS

Connect an appropriate transient suppressor in parallel with all inductive loads. Consult the suppressor vendor's application literature for proper selection and sizing.

Caution: Damage to the 7500 can result from excessive voltage transients generated by unsuppressed inductive loads. This damage is not within the scope of the normal instrument service and is not covered by the Magtrol Warranty.

3.2.2 CURRENT OVERLOAD

There are no fuses in the 7500 measuring circuits. Therefore, excessive current passed through the amps terminals will cause excessive internal heating and possible unit damage.

CAUTION: THIS OVERLOAD ABUSE IS NOT COVERED BY THE MAGTROL WARRANTY.

Know your load conditions and double check all connections. If an overload should occur, immediately remove all power and locate and correct the problem before re-energizing your circuit. If a circuit breaker is installed, it must be installed on the load side of the 7500 (downstream). This will keep the low impedance of the input line connected to the 7500 for surge suppression. If the line side must also contain a breaker, it should be delayed in operation to open after the load side breaker has opened.

3.2.3 SURGE PROTECTION

Use Metal Oxide Varistors (MOV) or other equivalent transient suppressors connected between lines at the load (across the load). These suppressors are an absolute necessity when inductive loads are used. In three-phase systems, each load must have a suppressor.

Figure 3–7 Transient Voltage Suppression

3.2.4 CIRCUIT BREAKERS

With the circuits described in *Section 3.3.1.1 - Hardware Connections*, use the 7500 remote voltage sense by measuring the voltage at the load. This increases measurement accuracy by eliminating line voltage drop from the power measurement. For safety, an overload circuit breaker removes all load voltage during an over-current condition. The voltage sense lines are connected at the line side of the circuit breaker to help prevent inductive transients from entering the 7500 as the circuit breaker opens. Make sure that connections from the circuit breaker to the load are heavy conductors and short as possible.

Caution: If a circuit breaker is used in the input line to the 7500, a circuit should be used that prevents the breaker from opening until after the load side breaker has opened. Otherwise, potentially damaging inductive transients can be applied to the 7500. Damage caused by these transients are outside the scope of the Magtrol Warranty.

3.3 TESTING INSTRUMENTATION SETUP

Before the 7500 can be utilized, it must be configured and connected to the devices intended for power measurement.

3.3.1 WIRING MODE

The 7500 has the ability to support a combination of up to 3 phases, therefore, there are a number of different ways in which the unit can be wired.

Note: The 7510 can only support a 1-phase, 2 wire connection

3.3.1.1 Hardware Connections

The wiring mode selections include:

- 1-Phase, 2-Wire
- 1-Phase, 3-Wire
- 3-Phase, 3-Wire
- 3-Phase, 4-Wire
- 3-Volt, 3-Amp

The following pages provide more detail on the power measurement, as well as wiring connection diagrams and schematics, of the different wiring modes.

1-Phase, 2-Wire

- Measures single-phase power.
- Can be wired on any input module.
- The Power Factor is derived from the following equations:
 - Amps $\Sigma = A_x$, Volts $\Sigma = V_x$
 - Active Power = W_{\emptyset}

Apparent Power = $V_{rms\emptyset} \times A_{rms\emptyset} = V_{\emptyset} A_{\emptyset}$

Power Factor = $W_{\emptyset}/V_{\emptyset} A_{\emptyset}$

(Where \emptyset is the phase of operation)

• Most commonly used for single phase AC and DC motor applications.

The following diagrams show the connections for a 1-Phase, 2-Wire measurement. Only one phase has been shown for clarity, but any of the three phases may be used.

Figure 3–8 Single-Phase, Two-Wire Wiring Schematic

1-Phase, 3-Wire

- Measures single-phase power.
- Utilizes input modules one and three.
- The Power Factor is derived from the following equations: Amps $\Sigma = (A_1 + A_3)/2$, Volts $\Sigma = (V_1 + V_3)/2$ Active Power = $\Sigma W = W_1 + W_3$ Apparent Power = $(V_{rms1} \times A_{rms1}) + (V_{rms3} \times A_{rms3}) = V_1 A_1 + V_3 A_3$

Power Factor = $\Sigma W/(V_1 A_1 + V_3 A_3)$

The following diagrams show the connections for a 1-Phase, 3-Wire measurement. Notice that only phase one and three are used.

Figure 3-10 Single-Phase, Three-Wire Wiring Schematic

Figure 3–11 Single-Phase, Three-Wire Wiring Connection

SETUP

3-Phase, 3-Wire

- Measures three-phase power.
- Utilizes input modules one and three.
- The Power Factor is derived from the following equations: Amps $\Sigma = (A_1 + A_3)/2$, Volts $\Sigma = (V_1 + V_3)/2$ Apparent Power $= \frac{\sqrt{3}}{2} \left((V_{rms1} \times A_{rms1}) + (V_{rms3} \times A_{rms3}) \right) = \frac{\sqrt{3}}{2} (V_1 A_1 + V_3 A_3)$ Active Power $= \Sigma W = W_1 + W_3$ Power Factor $= \Sigma W / \frac{\sqrt{3}}{2} (V_1 A_1 + V_3 A_3)$

The following diagrams show the connections for a 3-Phase, 3-Wire measurement. Notice that only phase one and three are used.

Figure 3–12 Three-Phase, Three-Wire Wiring Schematic

SETUP

- Measures three-phase power.
- Utilizes all three phases.
- The Power Factor is derived from the following equations: Amps $\Sigma = (A_1 + A_2 + A_3)/3$, Volts $\Sigma = (V_1 + V_2 + V_3)/3$ Active Power = $\Sigma W = W_1 + W_2 + W_3$ Apparent Power = $(V_{rms1} \times A_{rms1}) + (V_{rms2} \times A_{rms2}) + (V_{rms3} \times A_{rms3}) = V_1A_1 + V_2A_2 + V_3A_3$ Power Factor = $\Sigma W/(V_1A_1 + V_2A_2 + V_3A_3)$

The following diagrams show the connections for 3-Phase, 4-Wire measurement.

Figure 3–15 Three-Phase, Four-Wire Wiring Connection

3-Volt, 3-Amp

- Measures three-phase power.
- Utilizes all three phases.
- The Power Factor is derived from the following equations: Amps $\Sigma = (A_1 + A_2 + A_3)/3$, Volts $\Sigma = (V_1 + V_2 + V_3)/3$ Active Power = $\Sigma W = W_1 + W_3$

Apparent Power =
$$\frac{\sqrt{3}}{3} \left((V_{rms1} \times A_{rms1}) + (V_{rms2} \times A_{rms2}) + (V_{rms3} \times A_{rms3}) \right) = \frac{\sqrt{3}}{3} (V_1 A_1 + V_2 A_2 + V_3 A_3)$$

Power Factor = $\Sigma W \int_{-3}^{\sqrt{3}} (V_1 A_1 + V_2 A_2 + V_3 A_3)$

• Most common hookup for three-phase motors.

The following diagrams show the connections for a 3-Volt, 3-Amp measurement.

Figure 3–16 Three-Voltage, Three-Ampere Wiring Schematic

Figure 3–17 Three-Voltage, Three-Ampere Wiring Connection

3.3.1.2 Software Configuration

To configure the 7500 to coincide with the wiring on the rear panel, complete the following steps utilizing the USER MENU located on the front panel of the unit.

- 1. Turn on the 7500 . See Section 3.1 Powering Up the 7500 .
- 2. Press ENTER button. The display should appear as shown in *Figure 2–3 Device Setup Menu*.
- 3. Press \blacktriangleleft and \triangleright buttons until WIRING MODE appears in the display.
- 4. Press \blacktriangle and \triangledown buttons until desired wiring mode is reached.
- 5. Press ENTER to exit Device Setup Menu.

3.3.2 MEASUREMENT FILTER

During the RMS calculations, in the signal-processing path, there is a digital low-pass filter. The user can program the filter's cutoff frequency.

- Selections include 1 Hz, 2 Hz, 5 Hz, 10 Hz, 20 Hz, 50 Hz and 100 Hz .
- Correlation between filter setting and response is as follows:

Filter Setting	Response to Signal Change	Outcome
Low	Slow	Stable Reading
High	Fast	Unstable Reading

For more detailed information on theory, see *Chapter 4 – Operating Principles*.

3.3.2.1 Hardware Connection

Not applicable.

Note:

3.3.2.2 Software Configuration

To configure the 7500 measurement filter, complete the following steps utilizing the USER MENU located on the front panel of the unit.

- 1. Turn on the 7500. See Section 3.1 Powering Up the 7500.
- 2. Press ENTER button. The display should appear as shown in *Figure 2–3 Device Setup Menu*.
- 3. Press ◀ and ▶ buttons until MEASUREMENT FILTER appears in the display.
- 4. Press \blacktriangle and \triangledown buttons until desired measurement filter is reached.
- 5. Press ENTER to exit Device Setup Menu.

The 7510 default wiring mode is set at 1-phase, 2-wire, therefore no software configuration is needed.

3.3.3 EXTERNAL SENSOR

If currents continuously reach above 20 amps, an external sensor must be used.

3.3.3.1 Hardware Connection

In any of the wiring modes, any one of the amp meters may be replaced. The following diagram illustrates the connection.

Figure 3–18 Sensor Substitution Wiring Schematic

Figure 3–19 Sensor Substitution Wiring Connection

3.3.3.2 Software Configuration

To configure the 7500 external sensor, complete the following steps utilizing the USER MENU located on the front panel of the unit.

- 1. Turn on the 7500. See Section 3.1 Powering Up the 7500.
- 2. Press ENTER button. The display should appear as shown in *Figure 2–3 Device Setup Menu*.
- 3. Press \blacktriangleleft and \blacktriangleright buttons until EXTERNAL SENSOR appears in the display.
- 4. Press ENTER button. The display will appear as follows.

CURRENT	VOLTAGE	POWER/PF
1.0000 R/mV	1.0000 R/mV	<i>1.0000</i> R/mV
R:	58	R3

- 5. To set the scale factor for A1, press the RMS button under A1 and use the ▲▼◀▶ buttons in the USER MENU to adjust the value.
- 6. To set the scale factor for A2, press the RMS button under A2 and use the ▲▼◀▶ buttons in the USER MENU to adjust the value.
- 7. To set the scale factor for A3, press the AVG button under A3 and use the ▲▼◀▶ buttons in the USER MENU to adjust the value.
- 8. Press ENTER to exit the Device Setup Menu.

SETUP
3.3.4 AMP SCALING

The current measurement range can be extended by using a current transformer. Frequency response will be determined by the characteristics of the transformer used.

3.3.4.1 Hardware Connection

Figure 3–21 Current/Potential Transformer Connection

3.3.4.2 Software Configuration

To configure the 7500 amp scaling for a current transformer, complete the following steps utilizing the USER MENU located on the front panel of the unit.

- 1. Turn on the 7500. See Section 3.1 Powering Up the 7500.
- 2. Press ENTER button. The display should appear as shown in *Figure 2–3 Device Setup Menu*.
- 3. Press \blacktriangleleft and \blacktriangleright buttons until AMP SCALING appears in the display.
- 4. Press ENTER button. The display will appear as follows.

CURRENT	CURRENT VOLTAGE		
<i>1.0000</i> R/R	<i>1.0000</i> R/R	<i>1.0000</i> R/R	
RI XXX	RS XXX	R3 XXX	

Figure 3-22	Amp Scaling	Setup Menu
-------------	-------------	------------

- 5. To set the amp scaling for phase 1, press the RMS button under A1 and use the ▲▼◀▶ buttons in the USER MENU to adjust the value.
- 6. To turn phase 1 scaling ON, press the PEAK-CF button under OFF until ON is reached.
- 7. To set the amp scaling for phase 2, press the RMS button under A2 and use the ▲▼◀▶ buttons in the USER MENU to adjust the value.

Note:

- 8. To turn phase 2 scaling ON, press the PEAK-CF button under OFF until ON is reached.
- 9. To set the amp scaling for phase 3, press the AVG button under A3 and use the ▲▼◀▶ buttons in the USER MENU to adjust the value.
- 10. To turn phase 3 scaling ON, press the PEAK HOLD button under OFF until ON is reached.
- 11. Press ENTER to exit the Device Setup Menu.

When amps scaling has been activated, "*" will appear in the main menu next to the ampsrange as shown in the following figure.

CURRENT	VOLTAGE	POWER/PF	
0.000 RXXX	0.000 VXXX	0.000 XXXX	
	0001/*	SHIFT	

SCALING ACTIVATED

Figure 3–23 Amp/Volt Scaling Activated

3.3.5 Volts Scaling

The voltage measurement range can be extended by using a potential transformer. Frequency response will be determined by the characteristics of the transformer used.

3.3.5.1 Hardware Connection

See Figure 3–21 Current/Potential Transformer Connection.

3.3.5.2 Software Configuration

To configure the 7500 volt scaling for a potential transformer, complete the following steps utilizing the USER MENU located on the front panel of the unit.

- 1. Turn on the 7500. See Section 3.1 Powering Up the 7500.
- 2. Press ENTER button. The display should appear as shown in *Figure 2–3 Device Setup Menu*.
- 3. Press \blacktriangleleft and \triangleright buttons until VOLT SCALING appears in the display.
- 4. Press ENTER button. The display will appear as follows.

CURRENT		ENT VOLTAGE			/PF
1.0000	V/V	1.0000	V/V	1.0000	V/V
וע	XXX	72 2	XXX	EV	XXX

Figure 3–24 Volt Scaling Setup Menu

- 5. To set the volt scaling for phase 1, press the RMS button under V1 and use the ▲▼◀▶ buttons in the USER MENU to adjust the value.
- 6. To turn phase 1 scaling ON, press the PEAK-CF button under OFF until ON is reached.
- 7. To set the volt scaling for phase 2, press the RMS button under V2 and use the ▲▼◀▶ buttons in the USER MENU to adjust the value.
- 8. To turn phase 2 scaling ON, press the PEAK-CF button under OFF until ON is reached.
- 9. To set the volt scaling for phase 3, press the AVG button under V3 and use the ▲▼◀▶ buttons in the USER MENU to adjust the value.
- 10. To turn phase 3 scaling ON, press the PEAK HOLD button under OFF until ON is reached.
- 11. Press ENTER to exit the Device Setup Menu.

Note: When volts scaling has been activated, "*" will appear in the main menu next to the volts range as shown in *Figure 3–23 Amp/Volt Scaling Activated*.

3.3.6 Phase Setup

Once the wiring mode, measurement filter, external sensor, amp scaling and volt scaling have been connected and configured, the unit is ready to be configured for each individual phase.

	Note:	The PHASE button on the 7510 is not activated.	
--	-------	--	--

- 1. To select phase, press PHASE button until desired phase is reached.
- 2. Select current measurement mode (DC, RMS, peak, crest factor or peak hold).
 - a. To select DC press SHIFT and release, then press DC button located in CURRENT RANGE section of front panel.
 - b. To select RMS press SHIFT and release, then press RMS button located in CURRENT RANGE section of front panel.
 - c. To select peak, crest factor or peak hold, press SHIFT and release, then press PEAK-CF button located in CURRENT RANGE section of front panel. Keep pressing SHIFT and PEAK-CF buttons until desired selection appears in display. For more information on peak, crest factor and peak hold, see *Section 4.3 Measurement Modes*.
- 3. Select current range by using the ▲ and ▼ buttons located in CURRENT RANGE section of front panel. Selections include 50 mV, 250 mV, 0.5 V and 1 V when using an external sensor and 1 A, 5 A, 10 A and 20 A when using amps input.
- 4. Select voltage measurement mode (DC, RMS, peak, crest factor or peak hold).
 - a. To select DC press SHIFT and release, then press DC button located in VOLTAGE RANGE section of front panel.
 - b. To select RMS press SHIFT and release, then press RMS button located in VOLTAGE RANGE section of front panel.
 - c. To select peak, crest factor or peak hold, press SHIFT and release, then press PEAK-CF button located in VOLTAGE RANGE section of front panel. Keep pressing SHIFT and PEAK-CF buttons until desired selection appears in display. For more information on peak, crest factor and peak hold, see *Section 4.3 Measurement Modes*.
- 5. Select voltage range by using the ▲ and ▼ buttons located in VOLTAGE RANGE section of front panel. Selections include 30 V, 150 V, 300 V and 600 V.
- 6. Press W-VA-PF button until desired selection is reached. Selections include $Wx\uparrow$, Wx, VAx and PFx where "x" is equivalent to the selected phase.
- 7. Repeat steps 1-6 for each phase.
- 8. Once the individual phases have been configured, cycle-by-cycle or continuous must be chosen. See *Section 4.4 Measurement Methods*.
 - a.1. For cycle-by-cycle mode, press CYC-CONT button until display shows source reading in lower right corner similar to the following figure.

\bigcap	CURRENT	CURRENT VOLTAGE		
	0.000 RXXX	0.000 VXXX	0.000 XXXX	
	DOOXX	עססס	XXXX 00.00 Hz	
			SOURCE READING	

Figure 3–25 Cycle-by-Cycle Mode

- a.2. A source now needs to be selected. Press SHIFT button and release, then press SOURCE button. Keep repeating until desired source selection is reached. Selections include V1, A1, V2, A2, V3 and A3.
- b. For continuous mode, press CYC-CONT until display does not show any readings in the lower right corner.

3.3.7 SPECIAL FUNCTIONS

3.3.7.1 Hold

- Freezes display values.
- To set, press and release HOLD button. The display will appear as follows, indicating that the hold function is enabled.

\bigcap	CURRENT		VOLTAG	E		POWER/	PF
	0.000 RXXX	•	0.000	VXXX	•	0.000	XXXX
	000XX		000V				

• HOLD MODE INDICATORS

Figure 3–26 Hold Mode

• To disable, press and release HOLD button.

3.3.7.2 Average

- Mode in which the power analyzer displays the running average of amps, volts and watts.
- Used to stabilize mildly fluctuating readings or to determine watt-hours when used in conjunction with a timer.
- To set, press SHIFT button and release, then press AVG. The display will appear as follows, indicating that the Average Function is enabled.

 CURRENT			VOLTAG	E		POWER/	PF
0.000 F	IXXX	Θ	0.000	VXXX	Θ	0.000	XXXX
DODXX			000V				

AVERAGE MODE INDICATORS

Figure 3–27 Average Mode

• To disable, press SHIFT button and release, then press AVG.

3.3.7.3 Peak Hold

- Clears peak hold/inrush reading.
- To enable, press SHIFT button and release, then press PEAK HOLD. The display will flash the following, then return to the main menu.

Figure 3–28 Peak Hold Clear Display

3.3.7.4 Custom Display

- The display can be configured to present data in any format.
- To set, press SHIFT button and release, then press DISPLAY. The display will appear as follows.

CURRENT	VOLTAGE	POWER/PF
•		
,		

\square	CURRENT	VOLTAGE	POWER/PF
ſ	0.000 XXXX	0.000 XXXX	0.000 XXXX
	0.000 XXXX	0.000 XXXX	0.000 XXXX

Figure 3–30 Custom Display Menu

4.1 ANALOG PROCESSING

4.1.1 VOLTS

The volts signal is brought in through a precision voltage divider of 2 M and 2.4 k resistors. The gain is 0.0012. This signal is buffered (GAIN = 1) and passed into a programmable gain section. The gains for the voltage ranges are given below.

Range	Resistors	Gain (Amplifier)
30 V	12 k / 620	-19.350
150 V	2.4 k / 620	-3.871
300 V	1.2 k / 620	-1.936
600 V	620 / 620	-1.000

The signal is then presented to an AD7722AS 16-bit analog to digital converter. The part accepts an input signal of \pm 1.25 volts centered on a 2.5 VDC volt bias. The chart below shows system input at 10% and 100% of range.

Range	Volts In (VDC)	Gain (total)	Volts at A/D Input	Bits
20.1/	3	-0.023220	-0.0697	1826
30 V	30	-0.023220	-0.6966	18261
150 \/	15	-0.004645	-0.0697	1826
150 V	150	-0.004645	-0.6968	18265
200.1/	30	-0.002323	-0.0697	1827
300 V	300	-0.002323	-0.6969	18269
600 V	60	-0.001200	-0.0720	1887
000 V	600	-0.001200	-0.7200	18874

Converter Resolution: 2.5 / 2^16 = 2.5 / 65536 = 0.00003814697

4.1.2 Amps

The amps signal is brought in through a precision shunt of 0.012 ohms. This signal is amplified by 2 and passed into a programmable gain section. The gains for the voltage ranges are given below.

Range	Resistors	Gain (Amplifier)
1 A	12 k / 620	-19.350
5 A	2.4 k / 620	-3.871
10 A	1.2 k / 620	-1.936
20 A	620 / 620	-1.000

The signal is then presented to an AD7722AS 16-bit analog to digital converter. The part accepts an input signal of \pm 1.25 volts centered on a 2.5 VDC volt bias. The chart below shows system input at 10% and 100% of range.

Range	Amps (ADC)	Shunt Volts	Frist Stage Amp	Gain	Volts at A/D Input	Bits
1 .	0.1	0.0012	-0.0024	-19.35000	0.0464	1217
IA	1.0	0.0120	-0.0240	-19.35000	0.4644	12174
E ^	0.5	0.0060	-0.0120	-3.87100	0.0465	1218
54	5.0	0.0600	-0.1200	-3.87100	0.4645	12177
10.4	1.0	0.0120	-0.0240	-1.93600	0.0465	1218
IUA	10.0	0.1200	-0.2400	-1.93600	0.4646	12180
00.4	2.0	0.0240	-0.0480	-1.00000	0.0480	1258
20 A	20.0	0.2400	-0.4800	-1.00000	0.4800	12583

Converter Resolution: $2.5 / 2^{16} = 2.5 / 65536 = 0.00003814697$ Shunt resistance = 0.012

4.1.3 EXTERNAL SHUNT

The external shunt signal is brought in through a precision voltage divider of 9.1 k and 9.1 k resistors. The gain is 0.50. This signal is buffered and passed into a programmable gain section. The gains for the voltage ranges are given below.

Range	Resistors	Gain (Amplifier)
50 mV	12 k / 620	-19.350
250 mV	2.4 k / 620	-3.871
500 mV	1.2 k / 620	-1.936
1000 mV	620 / 620	-1.000

The signal is then presented to an AD7722AS 16-bit analog to digital converter. The part accepts an input signal of +/-1.25 volts centered on a 2.5 VDC volt bias. The chart below shows system input at 10% and 100% of range.

Range	Volts In (VDC)	Gain (total)	Volts at A/D Input	Bits
FO m)/	0.005	-9.67500	-0.0484	1268
50 111	0.050	-9.67500	-0.4838	12681
250 mV	0.025	-1.93550	-0.0484	1268
	0.250	-1.93550	-0.4839	12684
500 mV	0.050	-0.96800	-0.0484	1269
	0.500	-0.96800	-0.4840	12688
1000 mV	0.100	-0.50000	-0.0500	1311
	1.000	-0.50000	-0.5000	13107

Converter Resolution: 2.5 / 2^16 = 2.5 / 65536 = 0.00003814697

4.2 DIGITAL PROCESSING

Starting at the AD7722AS analog to digital converter, the input clock to the device is 14.31818 MHz. This clock frequency gives a sample rate or data output rate of 14318180 / 64 = 223721.5625 samples per second.

The 7500 Power Analyzer uses FPGA technique to implement DSP computing and IIR filter. The data can be stored up to 64 bit.

4.2.1 AC DETAILS

4.2.1.1 Interrupt Driven

The power analyzer will automatically update its data every 4.469 microseconds by completing the following sequence of events:

- The volts input is read and checked for an over range condition. The offset is then added to the reading and the reading is negated and saved.
- The amps input is read and checked for an over range condition. The offset is then added to the reading and the reading is negated and saved.
- The volt reading is checked to see if it is the peak and if so is stored.
- The amp reading is checked to see if it is the peak and if so is stored.
- The volt reading is squared and the squared reading is summed.
- The volt and amp reading is multiplied and the multiplied value is summed.
- The amp reading is squared and summed.

Note:

After 256 readings are summed, the sums are transferred to a 64-bit V² register, a 64-bit VI register, and a 64-bit I² register. A sample ready flag is set.

4.2.1.2 FPGA Program

The program reads that a sample is ready.

Divide the V ² register by 256. Store V ² in a 32-bit register. The result is appended to a 32 word circular buffer. Add buffer contents and divide by 32. The result is appended to a 2cd 32 word circular buffer.
Divide the I ² register by 256. Store I ² in a 32-bit register. The result is appended to a 32 word circular buffer. Add buffer contents and divide by 32. The result is appended to a 2cd 32 word circular buffer.
Divide VI register by 256. Store VI in a 32-bit register. The result is appended to a 32 word circular buffer. Add buffer contents and divide by 32. The result is appended to a 2cd 32 word circular buffer.
Add 2cd V ² buffer contents and divide by 32. Save this value. Add 2cd I ² buffer contents and divide by 32. Save this value. Add 2cd VI buffer contents and divide by 32. Save this value.
Each sample is now 256 X $(32 + 32)$ (16384) a/d samples. At 223721.5625 samples per second that is 73.23388 ms for a new input to fully average.
The VI sample is applied to an RC filter algorithm. The output of the filter is multiplied by a gain value. This value is stored for output.
The V ² sample is applied to an RC filter algorithm. The square root of the output is taken. The result is multiplied by a gain value. This value is stored for output.
The I ² sample is applied to an RC filter algorithm. The square root of the output is taken. The result is multiplied by a gain value. This value is stored for output.
These values are updated at 873.912 readings per second.
Every 8th time through the loop or at a rate of 109.239 the V and I peak values are stored for output and the data ready flag is set.

4.2.2 DC DETAILS

4.2.2.1 Interrupt Driven

The power analyzer will automatically update its data every 4.469 microseconds by completing the following sequence of events:

- The volts input is read and checked for an over range condition. The offset is then added to the reading and the reading is negated and saved.
- The amps input is read and checked for an over range condition. The offset is then added to the reading and the reading is negated and saved.
- The volt reading is checked to see if it is the peak and if so, is stored.
- The amp reading is checked to see if it is the peak and if so, is stored.
- The volt reading is summed.
- The amp reading is summed.
- The volt and amp reading is multiplied.
- The multiplied value is summed.

After 256 readings are summed the sums are transferred to a 64-bit V register, a 64-bit I register, and a 64-bit VI register. A sample ready flag is set.

4.3 MEASUREMENT MODES

Note:

4.3.1 Реак

The peak value is defined as the highest value that occurs in the cycle of a repetitive waveform.

The graph below shows one cycle of a repetitive waveform. The peak value is shown. The absolute value of the reading is used to determine the peak value.

Figure 4-1 Peak Example

4.3.2 PEAK HOLD / INRUSH CURRENT

Peak hold/inrush current allows the 7500 to store the highest value read in a designated period of time, the designated period of time being the time span since the last peak hold clear occurred. Values include amps, watts and volts in any preferred combination. See *Section 3.3.7.3 – Peak Hold*.

The graph below shows the current draw from a 1/3 horsepower motor during initial startup. At startup the current inrush peaks at about 14 amps then settles to 4.25 amps. When the unit is in peak hold/ inrush mode of operation, the front panel current reading displays 14.033 amps. The current reading indicates the peak inrush current, which is determined by the RMS value.

The operation of the volts and watts peak hold follows the same operation as explained for the current above.

Figure 4–2 Peak Hold/Inrush Current Example

4.3.3 DC

See Section 4.2.2 – DC Details.

4.3.4 RMS

See Section 4.2.1 – AC Details

4.3.5 Crest Factor

The crest factor measurement is determined by dividing the peak measurement by the RMS measurement. See the following graph for reference.

Figure 4–3 Crest Factor Example

4.4 MEASUREMENT METHODS

4.4.1 CYCLE-BY-CYCLE MODE

In the cycle-by-cycle mode the power analyzer looks at each complete cycle of the incoming waveform. The measurements are valid from 20 Hz to 500 Hz. The power analyzer may be synchronized from any of the phase volts or amps inputs, the line voltage or the back panel external sync input. If using volts or amps for synchronization, the input must be greater than 10% of the range setting.

4.4.2 CONTINUOUS MODE

In the continuous mode the measurement values are determined from continuously processed and filtered volts and amps input values. The measurements are valid from DC to 100 kHz and the output data rate from the process is about 109.24 samples per second. The power analyzer does not have to be synchronized to the measured waveform and the user may select the filter to be used in the mean process of the RMS value.

5. Computer Controlled Operation

Using the 7500 with a personal computer (PC) enables the unit to perform at its full capacity.

5.1 ABOUT THE GPIB INTERFACE

Magtrol prefers the GPIB (General Purpose Interface Bus)/IEEE-488 Standard for computer-to-instrument interfacing because:

- The GPIB parallel interface is faster than serial interfaces.
- The GPIB enables testers to access up to 15 instruments on one port. Because typical motor testing requires that at least five separate parameters be synchronized, a system of easy, fast access to more than one instrument is essential.
- The GPIB has rigid data formatting and hardware standards. These standards help to ensure that all functions will work properly when the hardware and software are installed.

Note: The GPIB interface is not standard on most personal computers. An interface card and driver software must be installed. An IEEE-488 cable must also be installed between the computer and the 7500. Magtrol recommends National Instruments Corporation hardware and software.

5.1.1 INSTALLING THE GPIB/IEEE-488 CONNECTOR CABLE

CAUTION:

Make sure both the computer and 7500 are turned off before installing the GPIB connector cable.

- 1. Connect one end of a high-quality, double-shielded cable to the 7500 GPIB connector.
- 2. Connect the other end to the GPIB interface in your PC.

Figure 5–1 GPIB Installation

5.1.2 CHANGING THE GPIB PRIMARY ADDRESS

Each instrument serviced by the GPIB has its own primary address code, which enables the computer to obtain readings from the instrument. The factory default of the GPIB address on the 7500 is 14.

Some PC interfaces can access from one to fifteen 4-bit primary addresses. Other interfaces can access as many as thirty-one 5-bit primary addresses. The 7500 uses the 4-bit format. For setup,

complete the following instructions utilizing the USER MENU control buttons.

- 1. Press ENTER.
- 2. Use the \blacktriangleleft and \triangleright buttons until I/O is reached.
- 3. Press ENTER.

NOTE:

4. Use the ◀ and ▶ buttons until GPIB ADDRESS is reached. The display should appear as follows:

Figure 5–2 GPIB Address Setup Menu

- 5. Use the \blacktriangle and \triangledown buttons until desired primary address is reached (range 0-15).
- 6. Press ENTER to return to main menu.

5.2 USB DRIVER SETUP FOR WINDOWS OPERATION SYSTEM

Copy the 7500.drivers.msi from the Magtrol Manual CD at programs\7500 Drivers directory into local drive of your PC.

If your PC is 64 bit operation system, then you need 7500Vx.inf to setup USB driver. If your PC is 32 bit operation system, then you need 7500Vx.xp.inf to setup USB driver.

1. Power on the 7500. A window in the right corner will show "Installing device driver software".

2. Click on the balloon depicted below will show which drivers did not install successfully.

Device dr lick here fo	river s or detail	oftwa s.	re was not success	fully	installed ^a	X
-	-	_				

3. The 7500 is a composite device meaning that it offers more than one USB interface to your PC. The first device is a communications device class, also known as a virtual COM port. This interface allows the USB to act as a legacy RS-232 device, and allows you to use programs such as Hyperterminal to control the 7500. The second interface is a USB Test and Measurement device. Drivers for this interface may already be installed on your computer. They are included as part of the MTEST 7 software. LabVIEW installations also include a version of compatible drivers to use with a test and measurement class interface. If you have either of these programs installed on your computer, when you click on the aforementioned balloon, the following window will appear.

4. Locate 7500.driver.msi and double click 7500.drivers.msi. The following window will pop up.

5. Ignore the warning and click yes to continue installation.

6. This successfully installs the Virtual COM port drivers to your 7500.

5.3 ETHERNET CONNECTION

Note:

Note:

You may use LabVIEW or any other programming language to write a custom program using sockets to open a connection to the 7500. The unit listens on port 7500 for any incoming connections. It is beyond the scope of this manual to discuss sockets programming, however, there are examples of programs implementing this technique available on the Magtrol website. Download the Mag.NET zip located in the downloads section of the web page. This page can be found under the support menu tab.

5.4 CHECKING THE 7500-TO-PC CONNECTION

R	

Make sure that the 7500 and its host computer are communicating before acquiring data. Only one communication device can be used at a time.

- 1. Make sure the primary GPIB address is set correctly for the 7500.
- 2. Set the input variable to 32 characters (30 variable characters and the two required data termination characters CR and LF. See *Section 5.5 Programming.*)

Desired Results

output_string = "Magtrol,7530,17A75000001,A0,A0"<delimiter>

If the desired results did not occur, please see Chapter 8 – Troubleshooting.

3. Issue output data command "*IDN?" and read 32 characters according to the instructions for your GPIB interface or serial.

5.5 DATA FORMAT

- All measurement values are returned as an ASCII-string floating point in E notation.
- The same data format will be used for both IEEE-488 and USB interface. See *Section 5.6 7500 Communication Commands*.
- Data is separated by commas.

Character	Definition
\s	space
\r	carriage return
∖n	line feed
^	Located in the first returned character position indicating peak input value is above range, user needs to increase range. NOTE: If a space is located in the first returned character position, the input signal is within range and no changes need to be made.

Sections 5.4.1 through 5.4.3 contain return data format examples for the following:

- Output Total (OT)
- Output Volts (OV)
- Output Element (OE)
- Output Watts (OW)
- Output Amps (OA)
- Output Frequency (OF)

5.5.1 OT EXAMPLE

Total = 183 characters

Output String: (1-182) = measurement value float E notation (ANSI)

Data Position: A1, V1, W1, A2, V2, W2, A3, V3, W3, ΣA , ΣV , ΣW , Frequency

5.5.1.1 Good Response

 $\label{eq:ssingle} $$1.86707E-01,\ssinle$

5.5.1.2 Over-Range Condition

 $\label{eq:slassode} $$1.85048E-01, \s4.94537E+01, \s4.20193E+00, \s-1.08896E-03, \s-3.04530E-02, \s0.00000E+00, \s-3.81305E-04, \s4.70035E-02, \s0.00000E+00, \s6.14162E-02, \s1.65010E+01, \s4.23552E+00, \s5.99860E+01\r\n$

5.5.2			
	Total	= 43 characters	
	Output String:	(1-42) = measurement value float E notation (ANSI)	
	Data Position:	Ax, Vx, Wx (where $x =$ requested phase)	
5.5.2.1	Good Respon	se	
	\s\s1.83352E-0	1,\s\s1.19342E+02,\s\s1.29812E+01\r\n	
5.5.2.2	Over-Range C	Condition	
	\s\s1.84250E-0	1,^\s4.95238E+01,^\s4.26064E+00\r\n	
5.5.3	OA/OV/OW/O	FEXAMPLE	
	Total	15 sharestern	
	Iotal	= 15 characters	
	Output String:	= 15 characters (1-14) = measurement value float E notation (ANSI)	
5.5.3.1	Output String: Good Respon	= 15 characters (1-14) = measurement value float E notation (ANSI) se	
5.5.3.1	Output String: Good Respon \s\s1.19494E+0	= 15 characters (1-14) = measurement value float E notation (ANSI) se 2\r\n	
5.5.3.1 5.5.3.2	Output String: Good Respon \s\s1.19494E+0 Over-Range C	= 15 characters (1-14) = measurement value float E notation (ANSI) se 2\r\n Condition	
5.5.3.1 5.5.3.2	Output String: Good Respon \s\s1.19494E+0 Over-Range C ^\s4.94796E+0	= 15 characters (1-14) = measurement value float E notation (ANSI) se 2\r\n Condition 1\r\n	

5.6 PROGRAMMING

Note: Check the manual provided with your software for full instructions.

5.6.1 DATA TERMINATION CHARACTERS

Use the following information to answer the formatting questions asked when installing your GPIB software. All GPIB data acquisition systems require the use of data termination characters. The 7500 uses the GPIB standard termination characters Carriage Return (CR) and Line Feed (LF). Provide them in that order.

5.6.1.2 Codes for CR-LF

	BASIC	HEX	DEC
CR =	CHR\$(13)	OD	13
LF =	CHR\$(10)	OA	10

5.7 7500 MAG.NET COMMANDS

IEEE-488	Address:	0-15
	Terminator:	carriage return followed by a line feed

USB Terminator: carriage return followed by a line feed

When entering a command code:

- 1. Type all characters in uppercase ASCII format.
- 2. End all commands with a carriage return followed by a line feed.
- 3. Do not string multiple commands together in one line.

R	Note:	If a command is not recognized, error information will be returned. Please see <i>Appendix C</i> for detailed explanations.
	Note:	Terminator is not available on the Ethernet connection.

5.7.1 '||*| COMMANDS

Command Code	Function	Explanation
*IDN?	Returns Magtrol device identification, serial	Magtrol,75N0, SSSSSS,FIRM,FPGA
	numbers and firmware and fpga revisions	Where N is the channel count (1, 2,3, 4) Where SSSSS is serial number of the assembly Where FIRM is revision firmware Where FPGA is revision firmware
		Example Magtrol,7530,17A75000001,A0,A0

5.7.2 |MEAS|URE COMMANDS

Command Code	Function	Explanation
MEAS:ALL	Outputs all available measurement values as a single comma delimited string. Values are given in E notation.	Output: A1, V1, W1, A2, V2, W2, A3, V3, W3, ∑ A, ∑ V, ∑ W, f

Command Code	Function	Explanation
MEAS:AMPS <phase>,<type></type></phase>	Returns amp measurement value at current instant.	<pre><pre><pre><pre><pre><pre><pre><p< td=""></p<></pre></pre></pre></pre></pre></pre></pre>
MEAS:CONF	Returns the measurements the CONF:MEAS currently has configured to return.	
MEAS:DISPLAY	Retrieves displayed values of current, voltage and power format as the OE command in average mode.	
MEAS:FREQ	Returns the current output frequency.	
MEAS:PHASE <phase></phase>	Returns the amps, volts and watts measurements of the requested phase.	<pre><phase> indicates the the desired phase measurements Valid values for <phase> are 0 sum of phases (wiring dependent) 1 phase 1 2 phase 2 3 phase 3</phase></phase></pre>
MEAS:VOLTS <phase>,<type></type></phase>	Returns voltage measurement value at the current instant.	average of voltage phases. Valid values for <phase> are: 0 average of voltage phases 1 phase 1 2 phase 2 3 phase 3 <</phase>

Command Code	Function	Explanation
MEAS:WATTS <phase>,<type></type></phase>	Returns the power measurement at the current instant.	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
		2 Power factor 3 Watts peak hold

5.7.3 |CONF|IGURATION COMMANDS

NOTE: The current configuration can be read by replacing the parameter with a question mark "?"Example: CONF:FILTER ? will return the current filter setting

Command Code	Function	Explanation
CONF:AMPS <phase>,<? range></phase>	Sets auto or manual range mode for the amp phases.	<pre><phase> indicates the input phase Valid inputs for <phase> are: 0 all phases 1 phase 1 2 phase 2 3 phase 3 Valid inputs for <range> are: ? returns the phases current setting 0 manual range 1 auto range</range></phase></phase></pre>
CONF:VOLTS <phase>,<? range></phase>	Sets auto or manual range mode for the volts phases.	<pre><phase> indicates the input phase Valid inputs for <phase> are: 0 all phases 1 phase 1 2 phase 2 3 phase 3 Valid inputs for <range> are: ? returns the phases current setting 0 manual range 1 auto range</range></phase></phase></pre>

Command Code	Function	Explanation
CONF:IRMSDC <phase>, <? RMS DC></phase>	Sets the measurement mode of the amp phases to either RMS or DC.	<pre><phase> indicates the input phase Valid inputs for <phase> are: 0 all phases 1 phase 1 2 phase 2 3 phase 3</phase></phase></pre>
		<pre><rms dc=""> indicates measurement mode Valid inputs for <rms dc=""> are: ? returns the current phases setting 0 RMS (AC and DC) 1 DC</rms></rms></pre>
CONF:VRMSDC <phase>, <? RMS DC></phase>	Sets the measurement mode of the voltage phases to either RMS or DC.	<pre><phase> indicates the input phase Valid inputs for <phase> are: 0 all phases 1 phase 1 2 phase 2 3 phase 3 <rms dc=""> indicates measurement mode</rms></phase></phase></pre>
		Valid inputs for <rms dc=""> are: ? Returns the current phases setting 0 RMS (AC and DC) 1 DC</rms>
CONF:FREQSRC source	Sets the frequency source for the cycle-by-cycle mode.	<pre><source/> indicates the input to use as the fundamental source. Valid values for <source/> are: ? returns current setting 0 V1 1 A1 2 V2 3 A2 4 V3 5 A3</pre>
CONF:MEAS <str>,<str>,</str></str>	Configures what data is output to the user, and the order in which it appears. See MEAS:CONF command to obtain the configured measurements	Values for <str> are AMPS DISPLAY FREQ PHASE VOLTS WATTS Choose one to parameters in any order. ? is valid as well, but can be the only parameter. It will return the current configured measurement. Example: CONF:MEAS AMPS,1,0,VOLTS,2,0 CONF:DISPLAY,A,DISPLAY,V,DISPLAY,W</str>

Command Code	Function	Explanation
CONF:MEASFILTER filter	Sets the AC and DC measurement filter.	<filter> indicates the low pass frequency filter used. Valid values for <filter> are: ? returns the current filter choice 0 1 Hz 1 2 Hz 2 5 Hz 3 10 Hz 4 20 Hz 5 50 Hz 6 100 Hz</filter></filter>
CONF:IRANGE <phase>,<? range></phase>	Sets the input source and acceptable current range.	<pre><phase> indicates the input phase Valid input s for <phase> are: 0 all phases 1 phase 1 2 phase 2 3 phase 3 <range> indicates current range. Valid values for <range> are: ? returns the phases current setting 0 20 A 1 10 A 2 5 A 3 1 A 4 1 V (ext sensor input range) 5 500 mV (ext sensor input range) 6 250 mV (ext sensor input range) 7 50 mV (ext sensor input range)</range></range></phase></phase></pre>
CONF:ISCALE <phase>,<? scale></phase>	Sets the amps scaling constant.	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>
CONF:VRANGE <phase>,<? range></phase>	Sets the voltage input range for a certain phase	<pre><phase> indicates the input phase Valid input s for <phase> are: 0 all phases 1 phase 1 2 phase 2 3 phase 3 <range> indicates voltage range. Valid values for <range> are: ? returns current voltage range setting 0 600 V 1 300 V 2 150 V 3 30 V</range></range></phase></phase></pre>

Command Code	Function	Explanation
CONF:VSCALE <phase>,<? scale></phase>	Sets the voltage scaling constant	<pre><phase> indicates the input phase Valid input s for <phase> are: 0 all phases 1 phase 1 2 phase 2 3 phase 3 <scale> indicates the voltage scaling constant in Volts/Volts. Valid values for <scale> are: ? return current voltage scale setting floating point numbers within the following range: 0.01 < scale < 10000.0 When <scale> is set to 0, the voltage scaling mode will be cleared</scale></scale></scale></phase></phase></pre>
CONF:MEASMODE type	Sets the continuous or cyclic measurement mode filter.	<type> indicates whether the measurement mode is continuous or cyclic Valid values for <type> are: ? return the current mode 0 continuous 1 cycle-by-cycle</type></type>
CONF:EXTISCALE <phase>,<? scale></phase>	Sets the external sensor scaling constant	<pre><phase> indicates the input phase Valid input s for <phase> are: 0 all phases 1 phase 1 2 phase 2 3 phase 2 <scale> indicates the amps scaling constant in A/mV. Valid values for <scale> are ? returns the current external sensor scale setting floating point numbers within the following range: 0.0001 < scale < 99999.0 NOTE: External sensor voltage input values are divided by this value to give output in amps when using the external sensor input current ranges.</scale></scale></phase></phase></pre>
CONF:WIREMODE wiremode	Sets the wiring mode for the sum measurement values	<wiremode> indicates the wiring mode. Valid values for <wiremode> are ? returns the current wiremode 0 1-phase, 2-wire 1 1-phase, 3-wire 2 3-phase, 3-wire 3 3-phase, 4-wire 4 3-volt, 3-amp</wiremode></wiremode>

5.7.4 |FUNC|TION COMMANDS

Command Code	Function	Explanation
FUNC:AVERAGE <start clear></start clear>	Starts average mode or clears average mode depending on the given parameter	<start> starts averaging mode <clear> clears averaging mode</clear></start>
FUNC:CLRPEAK	Clears peak hold values	No parameters

5.7.5 |COMM|UNICATION COMMANDS

Commnad Code	Function	Explanation
COMM:DHCP <0 1 ?>	Turns DHCP on/ off. You must send the COMM:UPDATE command following the DCHP command for the change to take place. When disabling DHCP, you must set a static IP address, gateway, and subnet mask prior to sending the COMM:UPDATE command. Contact your network administrator for the appropriate network settings.	Possible Parameters are: 0 Disables DHCP 1 Enables DHCP ? Tells the current state Returns OK
COMM:GATEWAY xxx.xxx.xxx.xxx	Sets the current gateway address used. You must send the COMM:UPDATE command after changing the gateway for the new setting to take effect.	Possible Parameters: ? returns the current gateway address xxx.xxx.xxx.is a valid IP address
COMM:HOSTNAME name	Sets the hostname of the device. This hostname may be used in a web browser instead of an IP address to view the web interface.	Possible Parameters: ? returns the current hostname name sets the current hostname, must be 15 characters or less. Invalid character list: $\langle, /, :, *, ?, ", <, >, $
COMM:IP xxx.xxx.xxx.xxx	Sets a static IP address. You must send the COMM:UPDATE command after changing the IP address for the new setting to take effect.	Possible Parameters: ? returns the current IP address xxx.xxx.xxx.xxx is a valid IP address
COMM:MAC XXXXXXXXXXX	Sets the current MAC address.	Possible Parameters: ? returns the current MAC address XXXXXXXXXXXX is a valid MAC address, only 0-9, A, B, C, D, E, F are valid characters.

Commnad Code	Function	Explanation
COMM:NETMASK xxx.xxx.xxx.xxx	Sets the current netmask. You must send the COMM:UPDATE command after changing the netmask for the new setting to take effect.	Possible Parameters: ? returns the current gateway address xxx.xxx.xxx.xxx is a valid netmask
COMM:UPDATE	Saves all LAN settings to non-volatile memory and activates them. To disable DHCP, a static IP, gateway, and netmask must have been set prior to calling the UPDATE command. If a static IP is already in use, UPDATE can be used to change any single static network setting, i.e. netmask, or gateway.	No Parameters Returns OK, or error if the update cannot be completed.

5.8 WEB INTERFACE OPERATION

Use the Ethernet cable to connect the 7500 to a switch, a router, or a wall outlet. To access the web interface of the 7500, you must know the IP address of your unit. By default, the 7500 is assigned an IP address by DHCP. To discover what IP address it has been assigned, send the command "COMM:IP ?" via USB and get the IP address. Alternatively, 7500 can use a static IP address and a crossover Ethernet cable should be used. At the same time the PC network needs to be set up accordingly. Once the units IP address is know, open a web browser on any computer in the same local network as your 7500 and type the units IP into the address bar. Alternatively, you can use http://magtrol7500/ to access the web interface. The web interfaces home page is depicted below. It will mirror the display of the 7500.

Figure 5–3 Web Interface Home Page

6.1 CLOSED-BOX CALIBRATION

The 7500 features closed-box calibration. The advantage of closed-box calibration is that the user does not have to disassemble the case or make mechanical adjustments.

6.2 CALIBRATION SCHEDULE

Calibrate the 7500:

- After any repairs are performed.
- At least once a year; more frequently to ensure required accuracy.

6.3 CALIBRATION COMMANDS

Command Code	Function	Explanation
CAm1,m2 <terminator></terminator>	Calibrates amps measurement value of present input range.	 "m1" indicates the input phase. Values for <i>m1</i> are: 0 = all phases 1 = phase 1 2 = phase 2 3 = phase 3 "m2" indicates the calibrated input value applied to the input. When m2 is equal to 0, the unit assumes zero calibration is requested and zero amps are on input. When m2 is greater than 0, the unit assumes gain calibration is requested and m2 amps are on input.
CVm1,m2 <terminator></terminator>	Calibrates volts measurement value of present input range.	 "m1" indicates the input phase. Values for <i>m1</i> are: 0 = all phases 1 = phase 1 2 = phase 2 3 = phase 3 "m2" indicates the calibrated input value applied to the input. When m2 is equal to 0, the unit assumes zero calibration is requested and zero volts are on input. When m2 is greater than 0, the unit assumes gain calibration is requested and m2 volts are on input.
CS <terminator></terminator>	Saves calibration values to EEPROM.	
CR <terminator></terminator>	Restores all calibration values from EEPROM (used for testing only).	
BCALm1 <terminator></terminator>	Set the device to calibration mode	Value for m1 are: 0 = Disable Calibration Mode 1 = Enable Calibration Mode

6.4 BASIC CALIBRATION PROCESS

Figure 6–1 Calibration/Verification Test Setup

The 7500 must be used with a personal computer to complete the calibration process.

- 1. Begin the process with the 7500 turned OFF.
- 2. Remove any external input connections.
- 3. Connect the amps and volts.
- 4. Turn the power ON. Set the 7500 device in calibration mode by the following command code BCAL1.
- 5. Set volt and amp range by entering the following command codes. VOLTS => RV0,m2 where m2 = 0 to 3

AMPS => RA0, m2 where m2 = 0 to 3

6. Set calibrator to 0 volts (DC) and 0 amps (DC).

R		Note:	DC is used for zero.
	7.	Enter the follow VOLTS => CV(AMPS => CA0	ving commands.),0 ,0
	8.	Set calibrator to	full scale range for volts (AC) and amps (AC).
R		Note:	AC 80 Hz is used for gain.
	9.	Enter the following commands. VOLTS => CV0,xx.xx AMPS => CA0,xx.xx	

Where xx.xx is the voltage/current on the inputs (full scale).

- 10. Repeat steps 5 through 9 for all ranges.
- 11. Remove amp and voltage inputs.
- 12. Attach external input to calibrator voltage.
- 13. Set amp range by entering the following command code. AMPS => RAØ, m2 where m2 = 4 to 7
- 14. Set calibrator to 0 volts (DC).

Note:

Note:

DC is used for zero.

- 15. Enter the following command. AMPS \Rightarrow CA0.0
- 16. Set calibrator to volts full scale range (AC).

AC 80 Hz is used for gain.

17. Enter the following command.

 $AMPS \Rightarrow CA0,xx.xx$

Where xx.xx is the voltage on the inputs (full scale).

- 18. Repeat steps 13 through 17 for all ranges.
- 19. When the calibration for all ranges is complete, enter the CS command to save.

7. Troubleshooting

Problem	Reason	Solution
No GPIB communication.	Setup error and/or hardware fault.	Check: • GPIB address of power analyzer. • GPIB cable - should be functioning and attached to power analyzer and computer interface card.
No USB communication.	Setup error and/or hardware fault.	Check: • USB driver installation • Cable attachment to power analyzer and serial interface port of computer.

If you require additional assistance, please contact Magtrol Customer Service at 1-716-668-5555.

Appendix A: Schematics

A.1 BLOCK DIAGRAM

APPENDICES

Appendix B: Compatible Command Sets

B.1 CONFIGURATION COMMANDS

Command Code	Function	Explanation
*IDN?	Returns Magtrol device identification, serial numbers and firmware and FPGA revisions	Magtrol,75 <i>X</i> 0, <i>Serial####</i> ,Firm,FPGA Where <i>X</i> is the channel count (1,2,3,4) Where <i>Serial#####</i> is the serial number fo the unit Where Firm is the firmware revision Where FPGA is the firmware revision Example:
*IDN? <terminator></terminator>	Identification query.	Returns model number and code revision.
AAm1,m2 <terminator></terminator>	Sets auto or manual range mode for the amps ranges.	 "m1" indicates the input phase. Values for <i>m1</i> are: 0 = all phases 1 = phase 1 2 = phase 2 3 = phase 3 "m2" indicates whether range mode is auto or manual. Values for <i>m2</i> are: 0 = manual range 1 = auto range
AVm1,m2 <terminator></terminator>	Sets auto or manual range mode for the voltage ranges.	"m1" indicates the input phase. Values for $m1$ are: 0 = all phases 1 = phase 1 2 = phase 2 3 = phase 3 "m2" indicates whether range mode is auto or manual. Values for $m2$ are: 0 = manual range 1 = auto range
FSm <terminator></terminator>	Sets the frequency source for cycle-by-cycle mode.	"m" indicates the input to be used as the fundamental source. Values for <i>m</i> are: 0 = V1 1 = A1 2 = V2 3 = A2 4 = V3 5 = A3
IS <terminator></terminator>	Starts average mode.	
IC <terminator></terminator>	Clears average mode.	

Command Code	Function	Explanation
MAm1.m2 <terminator></terminator>	Sets the RMS or DC	"m1" indicates the input phase.
,	measurement mode of amps	Values for <i>m1</i> are:
	phases.	0 = all phases
	F	1 = phase 1
		2 = phase 2
		3 = phase 3
		"m2" indicates measurement mode
		Values for <i>m2</i> are:
		0 = BMS (AC + DC)
		1 = DC
MVm1,m2 <terminator></terminator>	Sets the RMS or DC	"m1" indicates the input phase.
,	measurement mode of voltage	Values for <i>m1</i> are:
	phases.	0 = all phases
	F	1 = phase 1
		2 = phase 2
		3 = phase 3
		"m2" indicates measurement mode.
		Values for <i>m2</i> are:
		0 = RMS (AC + DC)
		1 = DC
MCm <terminator></terminator>	Sets the continuous or cyclic	"m" indicates whether the measurement
	measurement mode filter.	mode is continuous or cyclic.
		Values for <i>m</i> are:
		0 = continuous
		1 = cycle-by-cycle
MFm <terminator></terminator>	Sets the AC and DC	"m" indicates the measurement filter
	measurement mode filter.	low-pass frequency (response time).
		Values for <i>m</i> are:
		0 = 1 Hz
		1 = 2 Hz
		2 = 5 Hz
		3 = 10 Hz
		4 = 20 Hz
		5 = 50 Hz
		6 = 100 Hz
PC <terminator></terminator>	Clears all peak hold values	
	(volt, amp and watt).	
RAm1,m2 <terminator></terminator>	Sets current range and input	"m1" indicates the input phase.
	source.	Values for <i>m1</i> are:
		0 = all phases
		1 = phase 1
		2 = phase 2
		3 = phase 3
		"m2" indicates current range.
		Values for <i>m2</i> are:
		0 = 20 A
		1 = 10 A
		2 = 5 A
		3 = 1 A
		4 = 1 V external sensor input range
		5 = 500 mV external sensor input range
		6 = 250 mV external sensor input range
		7 = 50 mV external sensor input range
Command Code	Function	Explanation
-----------------------------------	--	--
RVm1,m2 <terminator></terminator>	Sets voltage range.	"m1" indicates the input phase. Values for m1 are: 0 = all phases 1 = phase 1 2 = phase 2 3 = phase 3 "m2" indicates voltage range. Values for m2 are: 0 = 600 V 1 = 300 V 2 = 150 V 3 = 30 V
SAm1,m2 <terminator></terminator>	Sets the amps scaling constant (current transformer).	 "m1" indicates the input phase. Values for <i>m1</i> are: 0 = all phases 1 = phase 1 2 = phase 2 3 = phase 3 "m2" indicates the amps scaling constant in A/A and must be set within the following range: 0.01 < m2 < 10000. When m2 = 0, the amps scaling mode will be cleared.
SVm1,m2 <terminator></terminator>	Sets the voltage scaling constant (potential transformer).	 "m1" indicates the input phase. Values for m1 are: 0 = all phases 1 = phase 1 2 = phase 2 3 = phase 3 "m2" indicates the voltage scaling constant in V/V and must be set within the following range: 0.01 < m2 < 10000. When m2 = 0, the voltage scaling mode will be cleared.
SEm1,m2 <terminator></terminator>	Sets the external current sensor scaling constant.	 "m1" indicates the input phase. Values for <i>m1</i> are: 0 = all phases 1 = phase 1 2 = phase 2 3 = phase 3 "m2" indicates the external current sensor scaling constant in A/mV and must be set within the following range: 0.0001 < m2 < 99999. NOTE: External sensor voltage input values are divided by this value to give output in amps in external sensor input current ranges.
WMm <terminator></terminator>	Sets the wiring mode for sum measurement values.	"m" indicates the wiring mode. Values for <i>m</i> are: 0 = 1-Phase, 2-Wire 1 = 1-Phase, 3-Wire 2 = 3-Phase, 3-Wire 3 = 3-Phase, 4-Wire 4 = 3-Volt, 3-Amp

B.2 DATA OUTPUT COMMANDS

Command Code	Function	Explanation
OAm1,m2 <terminator></terminator>	Requests amp measurement	"m1" indicates the input phase.
	value.	Values for <i>m1</i> are:
		0 = sum of amps phases
		1 = phase 1
		2 = phase 2
		3 = pnase 3
		Values for m2 are:
		0 = normal (BMS/DC) depending on
		measurement mode setting)
		1 = peak (instantaneous)
		2 = crest factor
		3 = peak hold/inrush (RMS/DC)
OVm1,m2 <terminator></terminator>	Requests volt measurement	"m1" indicates the input phase.
	value.	Values for <i>m1</i> are:
		0 = average of voltage phases
		(wiring mode dependent)
		$1 = \rho hase 1$
		3 = phase 3
		"m2" indicates the measurement value.
		Values for <i>m2</i> are:
		0 = normal (RMS/DC) depending on
		measurement mode setting)
		1 = peak (Instantaneous)
		2 = Clest lactor 3 = peak hold/inrush (RMS/DC)
OWm1 m2 <terminator></terminator>	Bequests watt measurement	m1" indicates the input phase
		Values for <i>m1</i> are:
		0 = sum of watt phases (wiring mode)
		dependent)
		1 = phase 1
		2 = phase 2
		3 = pnase 3
		Values for m^2 are:
		0 = watts
		1 = VA
		2 = power factor
		3 = watts peak hold
OF <terminator></terminator>	Requests output of frequency.	
OEm <terminator></terminator>	Requests phase measurement	"m" indicates the input phase.
	values (amps, volts, watts).	Values for <i>m</i> are:
		0 = sum of phases (wiring mode
		1 - nbase 1
		2 = phase 2
		3 = phase 3
OAVE <terminator></terminator>	Retrieves displayed values of	Displays values in average mode only
	current, voltage and power.	
	Returns data in the same	
	format as the OE command.	
OT <terminator></terminator>	Requests all measurement	
	values.	

Appendix C: Error Information

C.1 ERROR INFORMATION

ERR: SYNTAX – Returned when there is a "typo" in the command (MEES).

ERR: PARAMETER COUNT – When the number of parameters given is not what is expected.

ERR: INVALID PARAMETER – When a parameter given is not an excepted value for the Command.

ERR: UNKNOWN – Covers various situations and helps to identify programming errors. Is the default error.

ERR: NO COMMAND GROUP – When the first four characters of a given string are not a valid command group.

Testing, Measurement and Control of Torque-Speed-Power • Load-Force-Weight • Tension • Displacement

Via Paolo Uccello 4 - 20148 Milano Tel +39 02 48 009 757 Fax +39 02 48 002 070